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ABSTRACT 
With a given set of non-Gaussian output measure- 

ments of a 2-D linear shift-invariant (LSI) system, a 2- 
D blind deconvolution algorithm is proposed that uses 
Chi's Fourier series based model (FSBM) for the un- 
known system and the cumulant based inverse filter cri- 
teria proposed by Chi and Wu, and Tuganit. The pro- 
posed algorithm is an iterative optimization algorithm 
that is computationally efficient with a parallel struc- 
ture. The estimated FSBM for the unknown system 
that can be nonseparable or noncausal, is guaranteed 
to be stable. Then application of the proposed algo- 
rithm to texture synthesis with real texture images is 
also presented, in addition to some simulation results. 
Finally, we draw some conclusions. 

1. INTRODUCTION 

The two-dimensional (2-D) blind deconvolution is a 
widely known problem of estimating the desired signal 
u(m, n)  and the unknown linear shift-invariant (LSI) 
system h(m,n) with only a set of non-Gaussian mea- 
surements 

z(m, n)  = u(m, n) * h(m, n)  + w(m, n) (1) 

where w(m, n) is measurement noise. Recently, higher- 
order (? 3) cumulants, that contain both amplitude 
and phase information of the unknown system h(m, n) ,  
have been used for 2-D blind deconvolution as well as 
image modeling [l], texture image analysis and classifi- 
cation [2,3] and texture image synthesis [4,5]. 

Let v(m,n) denote a stable deconvolution filter (an 
inverse filter) and 

e(m, n)  = ~ ( m ,  n) * v(m, n) (2) 
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be the output signal by processing z(m,n) with 
this filter. Chi and Wu's 2-D inverse filter criteria 
J,,k(v(m, n ) )  defined as [l] 

where T is even and k > T ,  and Cl{y} denote the lth- 
order cumulant of random variable y, have been used 
for 2-D deconvolution [l] and texture image synthesis 
[4,5]. However, the model used for both the 2-D system 
H(z1 ,  z2) (2-D z-transform of h(m, n))  and the 2-D in- 
verse filter V ( z l ,  2 2 )  in [1,4,5] is the rational model, i.e., 
autoregressive (AR), moving average (MA) or autore- 
gressive moving average (ARMA) model. Because the 
objective function Jr,k (v(m, n ) )  to  be maximized is a 
highly nonlinear function of model parameters, one has 
to resort to iterative gradient type optimization algo- 
rithms for finding the optimum inverse filter V ( z l , z 2 ) .  
This leads to the following issue during the iterative 
search procedure: 

(A) The stability of nonseparable ARMA systems 
H(zl, .z2) and V ( z 1 ,  z2) can hardly be guaranteed, 
and meanwhile, the computational load and com- 
plexity is significant, especially for computing the 
gradient of JT,,+(v(m,n)) with respect to model pa- 
rameters. 

Recently, Chien, Yang and Chi [6] proposed a Fourier 
series based model (FSBM) for 1-D and 2-D allpass fil- 
ters. Chi [7] further proposed a l-D FSBM for arbitrary 
linear time-invariant systems that can be useful in sta- 
tistical signal processing due to the following character- 
istics: 

(B) The stability of 1-D FSBM (that can be nonmini- 
mum phase or noncausal) is guaranteed, and mean- 
while the associated iterative gradient type algo- 
rithm is computationally efficient with a simple 
parallel structure. 
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In this paper, motivated by (A) and (B), a 2-D blind 
deconvolution algorithm is proposed that also maxi- 
mizes Chi and Wu's inverse filter criteria J7-,k(v(m, n))  
with the 2-D FSBM used for the unknown 2-D system 
h(m, n) and its inverse system w(m, n). Then the pro- 
posed algorithm is applied to texture synthesis since 
texture images can be modeled as (1) as :reported in 
[3-51. 

2. A 2-D DECONVOLUTION ALGORITHM 

Assume that measurements z(m, n) can be modeled as 
(1) where h(m, n) is a real stable LSI system., u(m, n) is 
real, zero-mean, stationary, non-Gaussian, and w(m, n) 
is zero-mean Gaussian and statistically independent of 
4% 4. 
A. 2-D FSBM 

By extending Chi's FSBM for the 1-D case [7], the 
frequency response V(w1, w2) of 2-D FSBM for the real 
stable inverse filter v(m, n) can be expressed as 

V ( W l , W 2 )  = V*(-w1, -w2) 

where y0,o = 0 and yil,i2's are real. The sensitivity 
of the inverse filter output of e(m,n) with. respect to 
Yil,i2, ae(m, n)/dyil,i2, is crucial to the computational 
complexity of the 2-D blind deconvolution algorithm to 
be presented below. It can be easily shown that 

B. Objective Function 
The rth-order cumulant C,{e(m,n)} and the kth- 

order cumulant Ck{e(m,n)} used in J,,k(v(m, n))  have 
to be estimated from z(m,n), or simply replaced with 
the associated sample cumulants, cT{e(*m, n ) }  and 
ek{e(m,  n)} ,  respectively. In other words., the objec- 
tive function to be minimized is given by 

where r is even and k > r, and y is a ;p x 1 ( p  = 
(2pl + 1)(2p2 + 1) - 1) column vector containing all 
the unknown parameters yil,iz of the 2-D inverse filter 
V ( W l , W 2 ) ,  i.e., 

T 
7 = [Y-Pl ,-P2 7 Y-P1+l,-Pz , . . . , 7Pl,Pz-l7 7Pl ,PZ1 (7) 

The proposed iterative 2-D blind deconvolution algo- 
rithm, that uses the iterative Fletcher-Powell algorithm 
[8] to find the minimum of J(y) and the optimum y7 
is shown in Figure 1. Next, let us illuminate this 2-D 
deconvolution algorithm. 

The parameter Amin is the minimum for the step size 
X and the parameter E is for convergence tolerance. The 
initial p x p matrix R(O) can be any positive definite 
matrix (e.g., identity matrix) which always leads to a 
positive R(i) for i > 0 provided J ( T ( ~ ) )  < J(T(~- ' ) ) .  

At each iteration, the proposed algorithm updates 
-y(i) by 

(8)  +) = y(i-l) - xIR(i-1) (i-1) g 
where 

and 

where r = ~ ( ~ 1 -  y(i-l) and s = g( i )  - g(i-l). When the 
algorithm converges (l[J(~(~-l)) - J(y(i))]/J(y(i))l < 
E ) ,  

D. Signal Processing Procedure 
The signal processing procedure for obtaining the in- 

verse filter output e ( m ,  n), the cost function J ( T ( ~ ) )  and 
the gradient g(i) is shown in Figure 2. It can be easily 
seen that the signal e(m, n) can be obtained using FFT. 
Then J ( T ( ~ ) )  can be computed using (6). To compute 
g ( i ) ,  one has to compute 

7 = .(i) (11) 

C. Algorithm 
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(15) 

where de(m,n)/dyi,,i ,  is given by (5). Let us conclude 
this section with the following remarks: 

(Rl) The signal processing procedure for computing 
e(m, n),  J ( Y ( ~ ) )  and g(i)  shown in Figure 2 is com- 
putationally efficient due to the simple parallel FIR 
filter bank structure. 

(R2) The proposed algorithm provides a local opti- 
mum solution instead of the global optimum so- 
lution for ?. However, the obtained ? guaran- 
tees the stability of both the optimum inverse filter 
V(w1,w2) and H ( w l , w 2 )  = 1/V(wl,w2). 

3. APPLICATION T O  T E X T U R E  
SYNTHESIS 

When x(m,  n) is a texture image that can be modeled 
as (1) under the previous assumptions, the proposed 
2-D deconvolution algorithm shown in Figure 1 can be 
applied to obtain a synthetic image 3(m, n) that has the 
same statistical characteristics with x(m,  n)  through 
the following procedure: 

Texture Synthesis Procedure (TSP): 
(1) Obtain the mean removed image y(m,n) = 
x(m,n) - m, where m, is the mean of x(m,n). 

(2) Obtain the texture image model H(w1,w2)  = 
1/V(wl, w2), modeled as an FSBM, and the optimum 
e(m,  n) by processing y(m, n) with the proposed 2-D 
blind deconvolution algorithm. 

(3) Generate an i.i.d. random field u(m,n) that has 
the same histogram as e(m, n). Then obtain the syn- 
thetic texture image ?(m, n) by 

?(m, n) = u(m, n) * h(m, n) + m, (16) 

which is then quantized into an integer valued image 
in terms of gray levels. 

4. SIMULATION AND EXPERIMENTAL 
RESULTS 

In the simulation and experiment, the proposed 2-D 
blind deconvolution algorithm was employed to esti- 
mate the FSBM parameters 7 with Amin = and 
E = lo-*, 7 ( O )  = 0 and R(O) equal to the identity ma- 
trix. Next, let us present some simulation results. 

A zero-mean 256 x 256 exponentially distributed i.i.d. 
random field u(m, n)  and a 2-D ARMA model h(m, n) 
with a non-symmetric support (taken from [4]) shown in 
Figure 3(a) were used to generate z(m, n) for SNR = 20 
dB and w(m,n) being white Gaussian. The proposed 
2-D deconvolution algorithm with r = 2 and k = 3 
(J2,3) ,  pl = p2 = 5 converged by spending 58 iterations 
and the estimated ^h(m, n)  is shown in Figure 3(b). One 
can see, from Figures 3(a) and 3(b), that ^h(m,n) (an 
FSBM model) is a good approximation to h(m,n) (an 
ARMA model). 

Next, let us present some results for texture image 
synthesis that were obtained using the proposed 2-D 
deconvolution algorithm with r = 2 and k = 4 ( J z , ~ )  
through the TSP presented in Section 3. Figures 4(a) 
and 4(b) show a 128 x 128 sand texture image (taken 
from USC-SIP1 Image Data Base 1.5.04) and the syn- 
thetic texture image, respectively. Figures 4(c) and 
4(d) show a 128 x 128 wood grain texture image (taken 
from USC-SIP1 Image Data Base 1.1.09) and the syn- 
thetic texture image, respectively. One can see from 
these figures that the synthetic texture images and the 
original texture images are quite similar. The synthetic 
texture images shown in Figures 4(b) and 4(d) were ob- 
tained by the proposed algorithm with p l  = p2 = 5 and 
20 iterations, and with p l  = p2 = 3 and 68 iterations, 
respectively. 

5 .  CONCLUSIONS 

We have presented a 2-D blind deconvolution algorithm 
(shown in Figure 1) using Chi’s 2-D nonseparable sta- 
ble FSBM given by (4) and the inverse filter criteria 
J,.,k(v(m,n)) given by (3), that also shares the char- 
acteristics (B) of l-D blind deconvolution algorithms 
using FSBM due to its simple signal processing proce- 
dure shown in Figure 2. Some simulation results and 
applications to texture image synthesis were presented 
to support the efficacy of the proposed algorithm. 
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Fig. 1. The proposed 2-D deconvolution algorithm. 
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Fig. 2. The signal processing procedure of the 
proposed 2-D deconvolution algorithm. 

(a) (b) 

Fig. 3. (a) The impulse response of the true 2- 
D system h(m,n) (an ARMA system) and that of 
the estimated 2-D system 
p1 = p 2  = 5. 

h 

h(m,n) (an FSBM) with 

Fig. 4. (a) The original 128 x 128 sand texture image 
and (11) the synthetic 128 x 128 sand texture image; and 
(c) the original 128 x 128 wood grain texture image and 
(d) the synthetic 128 x 128 wood grain texture image. 
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